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Effects of a nonlinear perturbation on dynamical tunneling in cold atoms
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We perform a numerical analysis of the effects of a nonlinear perturbation on the quantum dynamics of two
models describing noninteracting cold atoms in a standing wave of light with a periodical modulated amplitude
A(t). One model is the driven pendulum, recently considered by D.A. Steck, W.H. Oskay, and M.G. Raizen
@Science293, 274~2001!#, and the other is a variant of the well-known kicked rotator model. In absence of the
nonlinear perturbation, the system is invariant under some discrete symmetries and quantum dynamical tun-
neling between symmetric classical islands is found. The presence of nonlinearity destroys tunneling, breaking
the symmetries of the system. Finally, further consequences of nonlinearity in the kicked rotator case are
considered.
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Tunneling is one of the most typical features of quant
mechanics concerning oscillations between states that ca
be connected in the classical Hamiltonian dynamics by
trajectories. The original formulation of the problem i
volved states separated by potential barriers: the relevant
tures are semiclassically explained in terms of complex
lutions of Hamilton equations for one-dimensional syste
@1#, while a proper treatment in higher dimensions is cons
erably subtler even when integrability is preserved@2#. Re-
cently a new kind of tunneling, involving transitions betwe
classically separated regions in the presence of a nontr
structure of the phase space, has attracted considerable
tion, both theoretically@3–6# and experimentally@7–9#. In
particular, a large fraction of these papers focus on phys
settings realized with cold atoms in optical potentials. T
recent widespread interest and experimental activity in Bo
Einstein condensation@10# suggest checking whether th
presence of Gross-Pitaevskii nonlinearities@11# deeply influ-
ences the characteristic features of dynamical tunnel
Such a question was already raised and analyzed in
framework of the kicked oscillator@12#, where it was ob-
served how the nonlinear terms typically destroy quant
effects induced by symmetry@13,14#. The paper is organized
as follows: we firstly give a few details and fix notations f
the class of models we are going to consider, then ana
two cases: a driven pendulum and the kicked rotator; in
last section we briefly reconsider pioneering work made
the nonlinear kicked rotator@15,16# and supplement it with
new results for the quantum resonant case.

I. GENERAL SETTING

We will consider models described by the followin
Hamiltonian:

H5HO1V~q,t !5
p2

2
1A~ t !cosq, ~1!

wherep andq are canonical momentum and position coo
dinates, respectively, expressed in scaled dimension
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units, andA(t) is a periodic function of time. Under appro
priate choices of the functionA(t), the quantum version o
this model describes an ensemble of noninteracting cold
oms in presence of a standing wave with a periodica
modulated amplitudeA(t). The connection between th
scaled variablesq,p and the physical onesq8,p8 is q

52kLq8 and p5 k–p8/2kL\ ~wherekL is half of the wave
vector of the standing wave andk– is the effective Planck
constant@q,p#52 i k–) @17#.

We consider two possible choices for the periodic fun
tion A(t):

~a! The first model is the driven pendulum. The amplitu
A(t) is that reported in@8#, i.e., 22a cos2(pt); the periodt
of time modulation is 1 and the parametera depends on
some physical quantities of the system, kept fixed in exp
ments, such as the ac Stark shift amplitude, the electric fi
strength, and the dipole momentum of the atom.

~b! The second model is a variant of the well-know
kicked rotator model@17,18#, where the amplitudeA(t) is a
sum of d functions of periodt, k cosqSn50

n51`d(t2nt). The
parameterk measures the kick strength.

Owing to the time dependence of the amplitudeA(t), in
the kicked rotator time can be treated as a discrete varia
measured in intervals of the periodt, and the evolution is
discrete; in the driven pendulum instead, time is a continu
variable.

The two models present some analogies. In both mod
the potentialV(q,t) is periodic both in time and space wit
period t and 2p, respectively. Moreover, the two mode
share some symmetries: time-reversal@(q,p,t)→(q,2p,
2t)# and parity@(q,p,t)→(2q,2p,t)#.

The quantum Hamiltonian operator of the unperturb
system is obtained from the Hamiltonian~1! replacing the
classical canonical variables with the correspondent op
tors q̂ and p̂52 i\]/]q̂.

Space and time periodicity are conveniently dealt with
using the Bloch-Floquet theory. As the potential commu
with spatial translation of 2p, the quantized momentum ge
eigenvalues on a discrete latticep5\n1b, nPZ and where
©2003 The American Physical Society21-1
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b, called the quasimomentum, is the analogous of the Bl
phase in solid state physics@19#. In the present paper w
choose\51 ~see the former discussion about choice
units!, so that the quasimomentum takes values in the in
val @0, 1! ~the analogous of the first Brillouin zone!.

Quasimomentum is preserved during quantum evolu
and parametrizes a single quantum rotor, fixing the origin
the discrete lattice in momentum space. The evolution of
ensemble of noninteracting atoms can be modeled by a
perposition of the evolutions of independent rotors.

Because of the invariance of the quantum evolution
erator under time translation by an intervalt @U(t1t)
5U(t)#, an evolution operatorUt over one period can be
defined, called the Floquet operator. The eigenvalues of
Floquet operator aree2 i (et/\), where the real quantitiese,
independent fromt, are called quasienergies. The quasie
ergy spectrum is invariant under translation over 2p\/t.
Quasienergy plays the same role of energy in systems
continuous time variable.

Concerning the discrete symmetries we mentioned, n
that changing the sign ofp means changing the sign of th
integer part ofp (@p#5n→2n) and replacing the fractiona
part $p% of p by 12$p% (b→12b). Therefore only rotors
with b50 or b51/2 are invariant with respect to these d
crete symmetries; rotors withbÞ0, 1/2 mix each other: a
rotor labeledb is mapped to another rotor labeledb851
2b.

Now we discuss some feature of quantum dynamical t
neling for the two cases we selected, also considering
effect of Gross-Pitaevskii nonlinearities.

II. THE DRIVEN PENDULUM

Firstly we analyze the unperturbed system~1! without the
nonlinear term, which is the theoretical setting for expe
mental data reported in Ref.@8#. Note that in the experimen
tal results reported in@8#, the momentum is measured
units of 2kL\, which correspond to the scaled momentump

divided by k–'2.08. The classical trajectories are obtain
by a numerical integration of the Hamilton equations w
the fourth-fifth order Runge-Kutta method.

In Fig. 1 the Poincare´ surface of section for positionsq
and momentap of an ensemble of classical particles
shown for the valuea510.5: the time evolution of 1000
initial conditions, uniformly distributed in the squareupu
,10, qP@2p,p@ , is recorded at 100 subsequent modu
tion periods. The symmetries of the system under the tra
formationsq→2q and p→2p are clear. A pair of stable
fixed points of period two (q050;p0568.65) are present
The stability islands, formed by regular trajectories s
rounding the fixed points, are time-reversed images of e
other.

Since the Hamiltonian operator is nonautonomous, the
act Floquet operator of a quantum rotor, with fixed quasim
mentumb, is given by a Dyson expansion. In the numeric
simulation we use the lowest order split method@20#. The
Floquet operator is approximated by an ordered produc
evolution operators on small intervals of timeDt5t/L, with
L integer
03622
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Ût~b!5T expS 2 i E
0

t

@Ĥ01V̂~q̂;t !# D
')

k51

L

e2 iĤ 0~Dt/2!e2 iV̂~q̂;t !Dte2 iĤ 0~Dt/2!

5)
k51

L

e2 i ~t/4L !~ n̂1b!2
e2 i ~t/L !2a cos2@p~t/L !k# cosq̂

3e2 i ~t/4L !~ n̂1b!2
. ~2!

We use a finite base of dimensionN: the discrete momen
tum eigenvalues belong to the finite latticep5@m2(N/2)#
1b and the continuous angle variable is approximated
q5(2p/N)(m21) with mPZ, 1<m<N. We start by con-
sidering the case of a simple rotor with quasimomentumb
50.

In Fig. 2 the evolution of the first moment and the corr
spondent momentum distribution are shown fora510. The
initial state is a coherent state centered in one of the class
symmetric islands

f ~p!5Ce2 ipq0e2d2~p2p0!2
, ~3!

where the constantd is A1/2 andC a normalization factor. In
the simulations we use\51, q050, andp058.525.

It can be seen that the maximum of the distribution pro
ability oscillates periodically between the two symmet
values1p0 and2p0 . In Fig. 2~b! the probability density is
shown at timet556t corresponding to a negative value
^p&: its maximum is peaked atn529. As we already re-
marked, forb50 the quantum system is invariant with re
spect to parityP̂ and time inversionT̂ and dynamical tun-

FIG. 1. Poincare´ section of an ensemble of classical particles
the driven pendulum. The initial ensemble is uniformly distribut
in upu,10,uP@2p,p@ ; the values ofp andu are taken at intervals
multiples of the periodt.
1-2
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EFFECTS OF A NONLINEAR PERTURBATION ON . . . PHYSICAL REVIEW E68, 036221 ~2003!
neling between the symmetric classical stable regions
present, marked by quasiperiodical oscillations of the fi
moment between symmetric positive and negative val
~approximately^p&'66). For values of quasimomentab
different from 0 or 1/2, exact quantum symmetries are b
ken and periodical oscillations are damped and then s
pressed. The damping of oscillations is faster for values ob
far from 0 and 1/2.

The time evolution of the first moment can be expand
in terms of Floquet eigenstates as

^p~ t !&5(
j ,l

cj~0!cl* ~0!e2~ i /\!t~f j 2f l !(
n

nx j~n!x l* ~n!,

~4!

where the Floquet eigenfunctionsx j (n) are expressed in mo
mentum representation, the phasesf j ,l are the corresponden
eigenvalues~connected to quasienergies byf5te) and the
squared modulus of the coefficientscj (0)5^x j uc(0)& gives
the overlap of the eigenfunctionux j& with the initial state. As
it can be seen from Eq.~4!, the Fourier frequenciesv j ,l , in
which the periodic motion can be decomposed, are sep
tions between two Floquet eigenvalues (v j ,l5f j2f i). The
dominant frequenciesv j ,l correspond to Floquet eigenstat
that more contribute to the dynamics, having an high over
with the initial state.

The Floquet eigenfunctions and eigenphases are evalu
by a numerical diagonalization of the operator. By using
finite basis~the momentum is discretized usingN points!, the
Floquet operator is reduced to a finite matrixN3N and it is
calculated as follows. The columns of the Floquet operato
the momentum representation are obtained by evolving o
one periodt the momentum eigenstates. Owing to the fini

FIG. 2. ~a! The momentum distributions at timest50 and~b!
t556t for one rotor with zero quasimomentum. The values of
parameters area510.0, N5128, L5500. ~c! The corresponden
tunneling oscillations of the first moment. Time is measured
number of periods.
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ness of the basis, the evolution of the momentum eigenst
initially localized on the edges of the basis is affected
errors. To overcome this problem, we calculate the Floq
operator using a basis of double dimensionÑ52N, so that
the variablep takes discrete values in the intervalpP@2N
11,N#. Then we extract from the matrixÑ3Ñ a nonunitary
submatrix of dimensionN in which p varies in the range
@2(N/2)11,(N/2)#. The disadvantage of using a nonunita
matrix is to find some eigenvalues inside the unitary circ
Nevertheless, the number of nonunitary eigenphases and
errors can be reduced by increasing the dimensions of
basesN and Ñ.

The pairs of eigenfunctions (x j ,x i) that dominate the dy-
namics of the system are selected by three conditions@21#:
~a! the maximum presence probabilityp̄ inside the region
where the classical stable islands lie~i.e., unu,10); ~b! the
maximum overlapping probability of each eigenfunctio
with the initial state,Pj5 z^x j uc(0)& z2; ~c! the maximum
mutual overlapping probability between the two eigenfun
tionsPj Pi . In Figs. 3~a!–3~c! three Floquet eigenstates ver
fying the conditionsp̄ j.0.5,Pj.0.07 andPj Pi.0.0049 are
shown.

Fourier analysis of̂ p(t)&, with a resolution of 2p/512
'0.0123, reveals five dominant frequencies (v150.0859;
v250.1841;v350.3559;v450.4909;v551.1167). A part
of the spectrum around zero is represented in Fig. 3~d!. The
dominant frequencies are the peaks higher than the das
horizontal line.

The differences between the eigenphases of the eig
functions shown in Fig. 3 (fa54.4579,fb54.1035,fc
53.9198) correspond to the frequencies of the spectru
marked by arrows:v25fb2fc , v35fa2fb , v45fa
2fc .

FIG. 3. ~Color online! ~a!–~c! Three Floquet eigenstates in
volved in the dynamics of the system;~d! the Fourier spectrum of
^p(t)&. The dashed horizontal line determines the limit of the dom
nant frequencies: the five higher peaks emerge.
1-3
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R. ARTUSO AND L. REBUZZINI PHYSICAL REVIEW E68, 036221 ~2003!
Up to now we have considered quantum evolution cor
sponding to a fixed quasimomentum~that furthermore re-
spects quantum symmetries!: we now consider the evolution
of a distribution of rotors with different quasimomentab,
each evolving with the operator~2! with a fixed quasimo-
mentumb @22#: c(p,0)5 f (p)dn,@p# . The initial momentum
distribution f (p) is a coherent state peaked in the center
one of the two classical islands of Fig. 1, as in Eq.~3!.

During the evolution eachb rotor evolves independentl
and the mean value of the observables of the system i
average over different rotors. The time evolution of the m
mentum distribution and of the mean value ofp̂ has been
calculated. The data fora510.5 are shown in Fig. 4. The
spreading in quasimomentum isDb50.2 around the value
b51/2, which preserves the symmetries. The oscillations
^p(t)& correspond to the tunneling of the quantum state
tween the two symmetric islands in the classical phase sp
Note that as in the experimental data@8#, during time evolu-
tion, the momentum distribution of the system maintains
maximum localized in the starting island, in the region
positive momenta@see the momentum distribution in Fig
4~b!, corresponding to a minimum value of the average m
mentum#. Therefore, in consequence of the average over
ferent rotors, the oscillations of^p(t)& do not reach negative
values, for which higher values of probability density in r
gions of negative momenta are needed.

Moreover, the spreading in quasimomentum can rep
duce the decay of the oscillations in time. In accordance w
@6#, we have also verified that the decay of oscillations
faster if the dispersion inb is increased.

As it can be seen from short-period oscillations in F
4~c!, the behavior of̂ p(t)& is a superposition of tunneling

FIG. 4. The momentum distributions at timest50 and ~b! t
510t in a system of 101b rotors, with b equally spaced in the
interval 0.4<b<0.6. The values of the parameters area510.5,
N5128, L5500. ~c! The correspondent tunneling oscillation
Time is measured in number of periods.
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oscillations with slightly different frequencies because t
spreading in quasimomenta corresponds to a spreading o
dominant frequencies of the motion.

We now study the influence of a Gross-Pitaevskii nonl
earity in the dynamics: where the Schro¨dinger operator is
modified by adding a nonlinear term dependent on
squared modulus of the wave function of the system,uucu2.
The approximate expression of the evolution operator
comes

Ût~b!')
k51

L

R̂S t

L DexpF2 i
t

L
2a cos2S p

t

L
kD cosqGR̂S t

L D
R̂S t

L D5e2 i ~t/4L !~ n̂1b!2
expS 2 i

t

2L
uucnu2D . ~5!

The multiplicative factore2 i (t/2L)uucnu2 breaks the symme
tries of the system.

In the presence of the nonlinearity term, the tunneli
oscillations of the first moment lose periodicity in time an
are progressively suppressed at long times@see Fig. 5~a!#. In
Fig. 5~b! the difference between the first moment of the u
perturbed system and that of the perturbed one is shown
three values of the nonlinear parameteru: u53 ~solid line!,
u57 ~dashed line!, u510 ~dotted line!.

We have also calculated the time-averaged first mom
P(t)5(1/t)S t850

t21 ^p(t8)& for 50 values ofu equally spaced
in the interval 0,u,10 and we have compared the value
Pu with P0 in the absence of nonlinearity.

In Fig. 6 the time T at which the quantityuPu(T)
2Pu50(T)u exceeds the fixed valueD versus the nonlinea
parameteru is shown; each curve corresponds to a differe
value of the parameterD from 0.2 to 0.005. The intervals o

FIG. 5. ~a! ^p(t)& for u55, a510, N5128; ~b! ^p(t)&u

2^p(t)&0 versust for u53 ~solid line!, 7 ~dashed line!, and 10
~dotted line!. Time is measured in number of periods.
1-4
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EFFECTS OF A NONLINEAR PERTURBATION ON . . . PHYSICAL REVIEW E68, 036221 ~2003!
time T decrease algebraically with respect tou with the law
T5B/uA. In Table I the power-law exponentsA and the
constantsB are shown for different parametersD.

III. KICKED ROTATOR MODEL

The Hamiltonian of the classical system is

H5
p2

2
1k cosq (

n50

1`

d~ t2nt!. ~6!

The correspondent classical map is the well-known st
dard map@23#, defined on the cylinder

pn115pn1k cosqn ,

qn115qn1tpn11 mod~2p!. ~7!

After the scaling of the variablep (p85tp/2) and the intro-
duction of the parameterK5tk/2, the map can be symme
trized and reduced on the 2-torus@0,2p@3@2p,p@ :

qn11
2 5qn

11pn8 ,

pn118 5pn1K cosqn11
2 mod~2p!, ~8!

FIG. 6. The separation timeT between Pu and P0 , when
uPu(T)2Pu50(T)u exceeds the valueD versus u. Starting
from above, the six curves correspond toD
50.2,0.1,0.05,0.02,0.01,0.005. In the inset a log-log plot is sho

TABLE I. Fitting parameters ofT.

D B A

0.005 0.071960.0012 0.154760.0096
0.01 0.083660.0012 0.164960.0084
0.02 0.097960.0011 0.166460.0072
0.05 0.121960.0011 0.190860.0059
0.1 0.145660.0010 0.203160.0050
0.2 0.176660.0012 0.219360.0042
03622
-

qn11
1 5qn11

2 1pn118 mod~2p!,

where the signs1 and2 refer to the instants after and befo
the nth and (n11)th kicks.

The classical system depends only on the parameteK.
For K>Kc'0.97 the system undergoes a transition to glo
chaos, the last KAM curve breaks and unbounded diffus
in action space takes place. Nevertheless even forK@1
some small stability islands survive in the classical ph
space, correspondent to accelerator modes@23–25#.

In Fig. 7 the classical phase space of the map~8! for K
52.21 with the stability islands of accelerator modes
shown.

There are two periodic orbits of period two: one form
by the pair of fixed points~p, 60.7656! and the other by the
pair ~0, 62.3714!. The points of each periodic orbits ar
symmetric respect top50. They are surrounded by stabilit
islands inside which the dynamics of the system is regu
each island is delimited by KAM curves, which cannot
crossed. During the evolution, ensembles of points initia
located inside the islands centered in~p, 60.7656! do not
mix with those located inside the islands centered in~0,
62.3714!.

The invariance of the system under space reflection
time inversion can be seen clearly from the structure of
phase space.

The quantum version of the system is a variant of
kicked rotator model@26#, described by the Floquet operato

Ût5R̂K̂R̂5e2 i ~t/4!~ n̂1b!2
e2 ik cosqe2 i ~t/4!~ n̂1b!2

~9!

~the kicked rotator corresponds to quasimomentumb50).

n.
FIG. 7. Classical phase space of the standard map~8! for K

52.21 with islands of accelerator modes. The phase space is
metric under space and time inversion.
1-5
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R. ARTUSO AND L. REBUZZINI PHYSICAL REVIEW E68, 036221 ~2003!
For values oft54pM /N ~with M, NPN) the kicked
rotator undergoes a quantum resonance@27#, where the spec-
trum acquires a band structure, yielding ballistic transp
~see also@28#!.

Having set\51, the parameterst andk are scaled by\
with respect to the classical ones (t5tcl\ and k5kcl /\).
Therefore the quantum parametert plays the role of\; the
classical limit of the system is obtained by the limitst→0,
k→` andK5kt5const.

Forb50 orb51/2 the system is invariant with respect
parity P̂ and time inversionT̂, as in the former case. There
fore the Floquet eigenstates belong to invariant subspa
with respect to the discrete symmetries; for example, th
can be classified in two classes: odd or even with respec
parity @29,30#. In the following we fix the value ofb50 and
analyze first the kicked rotator for a resonant value oft and
then for a generic value oft.

A. Resonant case

Under the resonance conditiont54pM /N, the quantum
system is periodic of periodN if M or N is even@31#. There-
fore the quantum system can be reduced on a torus an
Floquet operator becomes a unitary finite matrix of dime
sion N3N. Exact eigenfunctions can be calculated.

The discrete momentum eigenvalues arep85n5m
2N/2, with m integer, varying in the interval 1<m<N. To
make a comparison between the quantum system and
classical one on the torus, the classical variablep has to be
rescaled by the factor 2/t, i.e., p85(2/t)p. Note that in the
following figures the apex of the quantum variablep8 is
omitted.

In Fig. 8 the first moment ofp̂ and the Husimi function of

FIG. 8. ~Color online! Husimi distribution of the state vector a
times ~a! t5800t, ~b! t5900t, ~c! t58400t. ~d! Tunneling oscil-
lations of ^p(t)&. Time is measured in number of periods.
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the momentum distributions at different times are shown
M51, N5128, andk54.42/t (t'0.098 andk545.022).
For the chosen value oft, the stable periodic orbits of the
classical map~8! correspond to orbits~p, 615.6! and ~0,
648.3! in the quantum phase space. The chosen initial s
is a coherent state~3! centered in (q050,p085(2/t)30.766
'15.605). Periodic tunneling oscillations between the tw
symmetric islands centered in6p08 take place.

The tunneling oscillations are not suppressed even
long times. The calculation of̂p(t)& in Fig. 8~d! is carried
on for 106 modulation periods.

Note that att58400t'824.668, when̂ p(t)& assumes a
maximum value, the quantum state is mainly localized in t
island to the upper bound of the torus, centered appro
mately atp08'648.3098@see Fig. 8~c!#. As already said, the
classical evolution of ensembles of points located in the
lands centered inp0'62.4(p08'648.3) is independent
from the evolution of points inside the islands centered
p0'60.8(p08'615.6), in one of which the initial wave
packet is localized.

The quantum evolution instead couples structures that
independent in the classical system. In fact some eigenfu
tions of the Floquet operator, involved in the dynamics, ha
high probability in both the pairs of islands@see Figs. 9~a!–
9~c!#.

In Fig. 10~a! a portion of the spectrum of the Floque
eigenphases versusk is shown. An avoided crossing can b
seen, close to the value ofk used in the calculations of this
section, i.e.k52K/t'45.022. The corresponding eigen
functions were selected by having a support in the reg
unu<25 greater than 0.4. The regionunu<25 corresponds to
the classical portion of the phase spaceupu5u(t/2)nu
<1.227, in which the stability islands centered inp0

FIG. 9. ~Color online! ~a!–~c! The Husimi distribution of three
eigenfunctions of the Floquet operator.~d! A section of the Fourier
spectrum of̂ p(t)&.
1-6
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EFFECTS OF A NONLINEAR PERTURBATION ON . . . PHYSICAL REVIEW E68, 036221 ~2003!
'60.7656 lie. Owing to the invariance properties of th
system, the eigenfunctions localized in regular regions of
classical phase space occur in doublets of states with op
site symmetries and nearly degenerate eigenvalues; w
packets localized in the symmetric islands of stability a
formed by symmetric or antisymmetric combinations of su
doublets. In Figs. 10~c! and 10~d! an example of a quaside
generate doublet fork545.02 is shown; the Husimi function
of one state of this doublet is plotted in Fig. 9~b!.

The dynamical tunneling can be explained by a thr
states model@30#. In Figs. 10~b!–10~l! the three eigenfunc-
tions involved in the tunneling process for three differe
values ofk are shown. Fixing a value ofk, the three states
that take part in the dynamical tunneling are a doublet
quasidegenerate states with opposite symmetry, localize
regular islands, and a third state localized in the chaotic
gion outside the stability islands@10~b! for k545.02 10~e!
for k545.05, 10~l! for k545.08]. It is the chaotic state tha
enhances dynamic tunneling between stability islands.

By varying k, the chaotic eigenstate@Fig. 10~b! for k
545.02] mixes itself with the state of the doublet sharing t
same symmetry@Fig. 10~d! for k545.02] until a complete
exchange between the two states happens@Fig. 10~h! and
Fig. 10~l! for k545.08] @5,30#.

Beside the triplet of states shown in Fig. 10, there a
other Floquet eigenstates that contribute to the behavio
the first moment~4! at fixedk; the separations between the
eigenvalues correspond to the frequencies found by the
composition of̂ p(t)& in Fourier components.

The frequencies mostly contributing to the motion are
vealed by peaks of the power spectrum of^p(t)&, repre-
sented in Fig. 9~d! for the parameterk'45.022. The spec-
trum has been calculated with a resolution ofDv52p/218

FIG. 10. ~a! A section of the eigenphases spectrum vsk of the
Floquet operator. Three eigenvalues for each value ofk are repre-
sented.~b!–~d! The momentum distribution of the three correspo
dent eigenfunctions fork545.02.~e!–~g! The three corresponden
eigenfunctions fork545.05.~h!–~l! The three correspondent eigen
functions fork545.08.
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'0.000 024. The three frequencies marked by arrows
v150.000 05760.000 012, v250.000 32160.000 012, v3
50.001 04060.000 012;v1 , v2 , andv3 correspond to the
difference between eigenphases of three doublets of quas
generate eigenfunctions: v15fa2fa855.501 869
25.502 808, v25fb82fb852.449 07322.448 753, and
v35fc82fc854.733 87924.732 833, wherefa , fb , fc
are the phases of the eigenfunctions plotted in Figs. 9~a!,
9~b!, 9~c!, respectively. These eigenfunctions have a supp
p̄ in the regionunu<25 greater than 0.45 and an overla
probability with the initial statePj greater than 0.01 (Pj Pi
.0.0001).

Also in this case we may consider the effect of a nonline
perturbationuucu2 in the Hamiltonian operator. The effect o
this nonlinear perturbation on the quantum dynamics of
kicked rotator has already been studied in Refs.@15,16# but
only in nonresonant cases.

Since the perturbation depends continuously on ti
through the wave functionc of the system, the time evolu
tion operatorR̂ between the kicks is approximated as a pro
uct of evolution operators on small intervals of timet/L ~L is
the number of small steps!:

R̂5)
i 51

L

expS 2 i
t

4L
n2DexpS 2 i

i

2

t

L
ucnu2D . ~10!

The effect of a nonlinear perturbation is to break the sy

-

FIG. 11. ~Color online! Suppression of periodical oscillations o
the first moment̂p(t)& in the presence of nonlinear perturbation fo
three different values of the nonlinear parameter:~a! u55, ~b! u
510, ~c! u520. The differenceD^p(t)& is plotted, with the same
scale on the vertical axis. The values of the other parameters
t54p/128, k54.42/t, N5128, L52000. Time is measured in
number of periods.
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metries of the system thus destroying tunneling. In Fig.
the difference between the first moment of the unperturb
system (u50) and that of the perturbed oneD^p(t)&
5^p(t)&u2^p(t)&0 is plotted for three different values of th
nonlinear parameter:u55,10,20. It is seen that, for increas

FIG. 12. ~Color online! Second moment vs time, measured
numbers of periods, for different values of the nonlinearity. Start
from above: u50, dash-dotted line;u55, dotted line; u510,
dashed line;u520, full line. The values of the parameters aret
54p, k52.5, N516384,L52000.

FIG. 13. ~Color online! Suppression of dynamical localizatio
of the time averaged second momentPint

2 (t) in the presence of
nonlinear perturbation~starting from below:u50, full line; u55,
dashed line;u510, dotted line;u520, dash-dotted line!. The pa-
rameter values aret51, k52.5, N5128, L52000. Time is mea-
sured in number of periods.
03622
1
d

ing values ofu, the amplitude of the oscillations ofD^p(t)&
grows and significant deviations of the first moment fro
that of the unperturbed system start on smaller time interv

We have also analyzed the effect of the nonlinear pert
bation on the second moment. In analogy with what has b
found for the kicked harmonic oscillator under the resonan

g

FIG. 14. ~Color online! ~a! Tunneling oscillations in the non-
resonant kicked rotator model;~b!–~d! suppression of dynamica
tunneling of the first moment̂p(t)& in the presence of nonlinea
perturbation @~b! u55, ~c! u510, ~d! u520]. The difference
D^p(t)& is plotted. The parameters values aret51, k54.42, N
5128,L52000. Time is measured in number of periods.

FIG. 15. ~Color online! Time T at which uD^p(t)&u becomes
greater thanD versus the nonlinear parameteru. Each curve corre-
sponds to different values ofD: D50.4,0.2,0.1,0.05 starting from
above.
1-8
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condition @14#, in the presence of the nonlinear perturbati
the growth of the second moment is slower than in
kicked rotator, even if it remains ballistic (^p2(t)&
5c(b)t2). In Fig. 12 the second moment vs time is show
the four curves correspond tou50,5,10,20 starting from
above. This persistence of resonant behavior once the
linear term is switched on~at least on our observation tim
scale! is somehow surprising, and we hope further theoret
analysis will reveal its significance~i.e., if it is not sup-
pressed on longer time scales!.

B. Generic case

We consider the kicked rotator fort51 and analyze the
effect of the nonlinear perturbation on the first and seco
moment. For this value oft the system is far from the clas
sical limit and displays quantum localization, even if, as
marked in @32#, quantum tunneling from the accelerat
mode islands to the chaotic regions provides an increas
the localization length of the system.

In accordance with@16#, the nonlinear perturbation sup
presses localization and gives rise to an anomalous diffu
with an exponent approximately equal to 2/5. In Fig. 13
bilogarithmic plot of the time-integrated second mome
Pint

2 (t)51/tS t850
t21 ^p2(t8)& for k52.5 and for different val-

ues ofu is shown; the straight line in the figure has a slope
2/5.

Tunneling oscillations of̂p(t)& for the kicked rotator are
plotted in Fig. 14~a!. In Figs. 14~b!–14~d! we show the sup-
,
.

re

,

ri

ar
E
tt.
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pression of tunneling oscillations of the first moment for d
ferent values of the nonlinear parameter~b! u55, ~c! u
510, ~d! u520. The differences D^p(t)&5^p(t)&u

2^p(t)&0 are plotted.
In Fig. 15 the timeT at whichuD^p(t)&u becomes greate

that D versusu is plotted. Each curve corresponds to diffe
ent values ofD. Note that the evolution of̂ p(t)& in the
kicked rotator model is calculated at time intervals equal
t ; therefore, the estimate of timeT is less precise than tha
calculated for the driven pendulum.

IV. CONCLUSIONS

We have analyzed different physical systems for wh
dynamical tunneling occurs: in particular the driven pend
lum and the kicked rotator. These systems are relevant
experimental settings recently realized with cold atoms.
have stressed several new features: from the role of h
initially quasimomentum states are assembled to the effec
Gross-Pitaevskii nonlinearities, revealing, in particul
subtle features happening in the resonant kicked rotator c
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