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We perform a numerical analysis of the effects of a nonlinear perturbation on the quantum dynamics of two
models describing noninteracting cold atoms in a standing wave of light with a periodical modulated amplitude
A(t). One model is the driven pendulum, recently considered by D.A. Steck, W.H. Oskay, and M.G. Raizen
[Science293 274(2001)], and the other is a variant of the well-known kicked rotator model. In absence of the
nonlinear perturbation, the system is invariant under some discrete symmetries and quantum dynamical tun-
neling between symmetric classical islands is found. The presence of nonlinearity destroys tunneling, breaking
the symmetries of the system. Finally, further consequences of nonlinearity in the kicked rotator case are
considered.
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Tunneling is one of the most typical features of quantumunits, andA(t) is a periodic function of time. Under appro-
mechanics concerning oscillations between states that cannptiate choices of the functioA(t), the quantum version of
be connected in the classical Hamiltonian dynamics by reathis model describes an ensemble of noninteracting cold at-
trajectories. The original formulation of the problem in- oms in presence of a standing wave with a periodically
volved states separated by potential barriers: the relevant feghodulated amplitudeA(t). The connection between the
tures are semiclassically explained in terms of complex soscaled variablesd,p and the physical ones)’,p’ is o
Iut|ons'of Hamilton equations for one-Q|men§|ona! systemszszﬁ, and p=kp'/2k # (wherek, is half of the wave
[1], while a proper treatment in higher dimensions is consid- . . .
erably subtler even when integrability is preserj@ll Re- vector of the standing wave arkl is the effective Planck
cently a new kind of tunneling, involving transitions betweenconstan{ ¢,p]= —ik) [17].
classically separated regions in the presence of a nontrivial We consider two possible choices for the periodic func-
structure of the phase space, has attracted considerable attéi@n A(t):
tion, both theoreticallyf3—6] and experimentallf7-9]. In (@) The first model is the driven pendulum. The amplitude
particular, a large fraction of these papers focus on physicah(t) is that reported i8], i.e., — 2« cos(nt); the periodr
settings realized with cold atoms in optical potentials. Theof time modulation is 1 and the parameterdepends on
recent widespread interest and experimental activity in Bosesome physical quantities of the system, kept fixed in experi-
Einstein condensatiofil0] suggest checking whether the ments, such as the ac Stark shift amplitude, the electric field
presence of Gross-Pitaevskii nonlinearifiés] deeply influ-  strength, and the dipole momentum of the atom.
ences the characteristic features of dynamical tunneling. (b) The second model is a variant of the well-known
Such a question was already raised and analyzed in tHgicked rotator modef17,18, where the amplitudé(t) is a
framework of the kicked oscillatof12], where it was ob- sum of & functions of periodr, k cosd3—5“&t—n7). The
served how the nonlinear terms typically destroy quantunparametek measures the kick strength.
effects induced by symmetiyL3,14]. The paper is organized Owing to the time dependence of the amplitudlg), in
as follows: we firstly give a few details and fix notations for the kicked rotator time can be treated as a discrete variable,
the class of models we are going to consider, then analyzmeasured in intervals of the periagl and the evolution is
two cases: a driven pendulum and the kicked rotator; in theliscrete; in the driven pendulum instead, time is a continuous
last section we briefly reconsider pioneering work made orvariable.

the nonlinear kicked rotatdrl5,16 and supplement it with The two models present some analogies. In both models
new results for the quantum resonant case. the potentiaM(3,t) is periodic both in time and space with
period 7 and 2, respectively. Moreover, the two models
|. GENERAL SETTING share some symmetries: time-rever§édy,p,t)— (&, —p,

—1t)] and parity[ (3,p,t)— (=3, —p,t)].

We will consider models described by the following ~The guantum Hamiltonian operator of the unperturbed
Hamiltonian: system is obtained from the Hamiltonia) replacing the
classical canonical variables with the correspondent opera-
tors 9 andp=—i%dld9.

Space and time periodicity are conveniently dealt with by
using the Bloch-Floquet theory. As the potential commutes
wherep and 9 are canonical momentum and position coor-with spatial translation of 2, the quantized momentum gets
dinates, respectively, expressed in scaled dimensionlessgenvalues on a discrete lattipe=2n+ 3, ne Z and where

2

H:HO+V(a,t)=%+A(t)cosi}, (1)
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B, called the quasimomentum, is the analogous of the Blochee 57—~ T~ T T
phase in solid state physi¢49]. In the present paper we ' 1
choosefi=1 (see the former discussion about choice of
units), so that the quasimomentum takes values in the inter- 197
val [0, 1) (the analogous of the first Brillouin zone
Quasimomentum is preserved during quantum evolution |
and parametrizes a single quantum rotor, fixing the origin of 5
the discrete lattice in momentum space. The evolution of an
ensemble of noninteracting atoms can be modeled by a su
perposition of the evolutions of independent rotors. 0
Because of the invariance of the quantum evolution op-
erator under time translation by an interval[U(t+ 7) I
=U(t)], an evolution operatot . over one period can be -5
defined, called the Floquet operator. The eigenvalues of the
Floquet operator are (") where the real quantities,
independent fromr, are called quasienergies. The quasien- ~'0]
ergy spectrum is invariant under translation ovethZr.
Quasienergy plays the same role of energy in systems witt
continuous time variable. -155
Concerning the discrete symmetries we mentioned, note
that changing the sign g8 means changing the sign of the
integer part ofp ([p]=n— —n) and replacing the fractional
part{p} of p by 1—{p} (8—1— ). Therefore only rotors
with =0 or 8= 1/2 are invariant with respect to these dis-
crete symmetries; rotors witg#0, 1/2 mix each other: a
rotor labeledB is mapped to another rotor labelg®l =1 ,
- B. Of(ﬁ):Texp(—ifo[ﬂoﬁ/(?&;t)])

Now we discuss some feature of quantum dynamical tun-

FIG. 1. Poincarsection of an ensemble of classical particles for
the driven pendulum. The initial ensemble is uniformly distributed
in |p|<10, #e[ —m,n[; the values op and @ are taken at intervals
multiples of the period-.

neling for the two cases we selected, also considering the L
effect of Gross-Pitaevskii nonlinearities. ~ H e IHo(AU2) = iV(D:D)Atg—iH(A2)
k=1

Il. THE DRIVEN PENDULUM

L
; . — —i(#4L) (A+ B)? a—i(7/L) 2 o] m(7/L)K] cosd
Firstly we analyze the unperturbed systémwithout the —kljl g | (TaL)(N+B) g i (rlL)2er cosTm(7/L)k] cos

nonlinear term, which is the theoretical setting for experi-

mental data reported in RgB]. Note that in the experimen- X @ i(7AL)(+ )7 2)
tal results reported i8], the momentum is measured in

units of A, which correspond to the scaled momentpm We use a finite base of dimensibdh the discrete momen-

divided by k~2.08. The classical trajectories are obtainedtum eigenvalues belong to the finite lattipe=[ m—(N/2)]
by a numerical integration of the Hamilton equations with + /8 and the continuous angle variable is approximated by
the fourth-fifth order Runge-Kutta method. ¥=(2m/N)(m—1) with meZ, 1=sm=<N. We start by con-

In Fig. 1 the Poincarsurface of section for position§  sidering the case of a simple rotor with quasimomenyBim
and momentap of an ensemble of classical particles is =0.
shown for the valuex=10.5: the time evolution of 1000 In Fig. 2 the evolution of the first moment and the corre-
initial conditions, uniformly distributed in the squafg|  spondent momentum distribution are shown dor 10. The
<10, e[ —m, o[, is recorded at 100 subsequent modula-initial state is a coherent state centered in one of the classical
tion periods. The symmetries of the system under the tranymmetric islands
formations— — and p— —p are clear. A pair of stable » Lo
fixed points of period two §,=0;po=+8.65) are present. f(p)=Ce 'PPog= 2" (P=P0)", 3
The stability islands, formed by regular trajectories sur- . o
rounding the fixed points, are time-reversed images of eaci¥here the constantis y1/2 andC a normalization factor. In
other. the simulations we usk=1, ¥,=0, andpy=8.525.

Since the Hamiltonian operator is nonautonomous, the ex- It can be seen that the maximum of the distribution prob-
act Floquet operator of a quantum rotor, with fixed quasimo2Pility oscillates periodically between the two symmetric
mentumg, is given by a Dyson expansion. In the numerical vValues+pg and —po. In Fig. 2b) the probability density is
simulation we use the lowest order split methj@®d]. The ~ Shown at timet= 567 corresponding to a negative value of
Floquet operator is approximated by an ordered product ofP: its maximum is peaked at=—9. As we already re-
evolution operators on small intervals of timé=/L, with ~ marked, for3=0 the quantum system is invariant with re-
L integer spect to parityP and time inversionl and dynamical tun-
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FIG. 2. (@) The momentum distributions at timés-0 and(b) ? 2 ° @
t=>567 for one rotor with zero quasimomentum. The values of the
parameters aree=10.0, N=128, L=500. (c) The correspondent
tunneling oscillations of the first moment. Time is measured in
number of periods.

|
w

FIG. 3. (Color onling (a)—(c) Three Floquet eigenstates in-
volved in the dynamics of the systertd) the Fourier spectrum of
(p(t)). The dashed horizontal line determines the limit of the domi-
nant frequencies: the five higher peaks emerge.

neling between the symmetric classical stable regions isess of the basis, the evolution of the momentum eigenstates
present, marked by quasiperiodical oscillations of the firsinitially localized on the edges of the basis is affected by
moment between symmetric positive and negative valuesrrors. To overcome this problem, we calculate the Floquet
(approximately(p)~ =6). For values of quasimomeni&  operator using a basis of double dimensir 2N, so that
different from 0 or 1/2, exact quantum symmetries are brothe variablep takes discrete values in the intern@a&[ —N
ken and periodical oscillations are damped and then sups 1 NJ. Then we extract from the matriXx N a nonunitary
pressed. The damping of oscillations is faster for valugs of submatrix of dimensiorN in which p varies in the range
far from 0 and 1/2. [—(N/2)+1,(N/2)]. The disadvantage of using a nonunitary
The time evolution of the first moment can be expandedmatrix is to find some eigenvalues inside the unitary circle.
in terms of Flogquet eigenstates as Nevertheless, the number of nonunitary eigenphases and the
errors can be reduced by increasing the dimensions of the
- _ * —({iM)t(p;— b)) _ * basesN andN.
(p(t))—% ¢j(0)ci (0)e P ; nxj(n)xi (n), The pairs of eigenfunctionsy{ , x;) that dominate the dy-
(4) namics of the system are selected by three conditi@af
(a) the maximum presence probabilify inside the region
where the classical stable islands (ie., |n|<10); (b) the
maximum overlapping probability of each eigenfunction
with the initial state,P;=|(x;|#(0))]*; (c) the maximum
mutual overlapping probability between the two eigenfunc-
the overlap of the eigenfunctidiy;) with the initial state. As  tionsP;P; . In Figs. 3a)-3(c) three Floquet eigenstates veri-
it can be seen from Ed4), the Fourier frequencies; ;, in  fying the conditiong;>0.5,P;>0.07 andP;P;>0.0049 are
which the periodic motion can be decomposed, are separghown.
tions between two Floguet eigenvalues; (= ¢;— ¢;). The Fourier analysis of p(t)), with a resolution of 2r/512
dominant frequencies;, correspond to Floquet eigenstates ~0.0123, reveals five dominant frequencies, ¢ 0.0859;
that more contribute to the dynamics, having an high overlapo,=0.1841w3=0.3559w,=0.4909ws=1.1167). A part
with the initial state. of the spectrum around zero is represented in Fid). Ihe
The Floguet eigenfunctions and eigenphases are evaluatééminant frequencies are the peaks higher than the dashed
by a numerical diagonalization of the operator. By using ahorizontal line.
finite basis(the momentum is discretized usihgpoints, the The differences between the eigenphases of the eigen-
Floguet operator is reduced to a finite matkx N and itis  functions shown in Fig. 3 &,=4.4579¢,=4.1035¢.
calculated as follows. The columns of the Floquet operator in=3.9198) correspond to the frequencies of the spectrum,
the momentum representation are obtained by evolving ovanarked by arrows:w,= ¢p— ., w3=ds— dp, W= P,
one periodr the momentum eigenstates. Owing to the finite-— ¢, .

where the Floquet eigenfunctiogg(n) are expressed in mo-
mentum representation, the phaggs are the correspondent
eigenvaluegconnected to quasienergies By=re) and the
squared modulus of the coefficiertg0)=(x;|#(0)) gives
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FIG. 4. The momentum distributions at times 0 and (b) t
=107 in a system of 1013 rotors, with 8 equally spaced in the
interval 0.4<3<0.6. The values of the parameters are 10.5,
N=128, L=500. (c) The correspondent tunneling oscillations.
Time is measured in number of periods.

FIG. 5. (a8 (p(t)) for u=5, =10, N=128; (b) (p(t)),
—(p(t))o versust for u=3 (solid line), 7 (dashed ling and 10
(dotted ling. Time is measured in number of periods.

oscillations with slightly different frequencies because the
) . spreading in quasimomenta corresponds to a spreading of the
Up to now we have considered quantum evolution corregominant frequencies of the motion.

sponding to a fixed quasimomentufthat furthermore re- e now study the influence of a Gross-Pitaevskii nonlin-
spects quantum symmetrjesve now consider the evolution earity in the dynamics: where the Sctinger operator is
of a distribution of rotors with different quasimomenta  modified by adding a nonlinear term dependent on the
each evolving with the operatd@) with a fixed quasimo-  squared modulus of the wave function of the systahg|2.
mentum [22]: ¢«(p,0)=f(p) énp;- The initial momentum  The approximate expression of the evolution operator be-
distribution f(p) is a coherent state peaked in the center ofcomes

I,:\a T

L
T T

one of the two classical islands of Fig. 1, as in ER).
—i(714L)(h+ B)? i 2
L) e exd 5T ul i ) (5)

,
—i—2acod

During the evolution eaclB rotor evolves independently Lo
H R( E) eX L
k=1

and the mean value of the observables of the system is art (8)~
average over different rotors. The time evolution of the mo-
mentum distribution and of the mean value fofhas been (

r
Wfk> cosv

calculated. The data fax=10.5 are shown in Fig. 4. The R
spreading in quasimomentum &3=0.2 around the value
B=1/2, which preserves the symmetries. The oscillations of o
(p(t)) correspond to the tunneling of the quantum state beJhe multiplicative factore
tween the two symmetric islands in the classical phase spaciies of the system. . _ .
Note that as in the experimental d4&, during time evolu- In the presence of the nonlinearity term, the tunneling
tion, the momentum distribution of the system maintains itsoscillations of the first moment lose periodicity in time and
maximum localized in the starting island, in the region ofare progressively suppressed at long tiffge Fig. $a)]. In
positive momentdsee the momentum distribution in Fig. Fig. 5(b) the difference between the first moment of the un-
4(b), corresponding to a minimum value of the average moJerturbed system and that of the perturbed one is shown for
menturr. Therefore, in consequence of the average over difthree values of the nonlinear parametieti=3 (solid line),
ferent rotors, the oscillations @p(t)) do not reach negative U=7 (dashed ling u=10 (dotted ling. _
values, for which higher values of probability density in re- We have also calculated the time-averaged first moment
gions of negative momenta are needed. P(t)=(1/t)2:,_:10<p(t’)> for 50 values ofu equally spaced
Moreover, the spreading in quasimomentum can reproin the interval 6<u<10 and we have compared the value of
duce the decay of the oscillations in time. In accordance wittP,, with P, in the absence of nonlinearity.
[6], we have also verified that the decay of oscillations is In Fig. 6 the timeT at which the quantity|P,(T)
faster if the dispersion i is increased. —Py—o(T)| exceeds the fixed valuA versus the nonlinear
As it can be seen from short-period oscillations in Fig.parameteu is shown; each curve corresponds to a different
4(c), the behavior ofp(t)) is a superposition of tunneling value of the parametex from 0.2 to 0.005. The intervals of

~i(#2Lulinl® preaks the symme-
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time T decrease algebraically with respectutavith the law

T=B/U".

In Table | the power-law exponents and the

constantsB are shown for different parametess

I1l. KICKED ROTATOR MODEL

The Hamiltonian of the classical system is

H

The correspondent classical map is the well-known stan

2 o

p—+ kcosﬂE o(t—nr).
2 n=0

(6)

dard map23], defined on the cylinder

Pn+1=Pntkcosd,,

Fnp1= It TPn+1

After the scaling of the variablp (p’ = 7p/2) and the intro-
duction of the parametdf = 7k/2, the map can be symme-

mod 2). (7)

trized and reduced on the 2-torl@, 27 [ X[ — 7, 7| :

Yne1=9, + P,

Pn+1=PntKcosd

mod 2), (8)

TABLE |. Fitting parameters of.

A B A
0.005 0.071€0.0012 0.154%0.0096
0.01 0.0836:0.0012 0.1642:0.0084
0.02 0.097%0.0011 0.16640.0072
0.05 0.1219%0.0011 0.1908:0.0059
0.1 0.1456:0.0010 0.203%0.0050
0.2 0.1766:0.0012 0.2193:0.0042

FIG. 7. Classical phase space of the standard @agdor K
=2.21 with islands of accelerator modes. The phase space is sym-
metric under space and time inversion.

ﬁr:r+1: Yni1tPprr mod2m),

where the signg- and — refer to the instants after and before
thenth and 1+ 1)th kicks.

The classical system depends only on the paramntéter
ForK=K_.~0.97 the system undergoes a transition to global
chaos, the last KAM curve breaks and unbounded diffusion
in action space takes place. Nevertheless evenKfsrl
some small stability islands survive in the classical phase
space, correspondent to accelerator mg@as-25.

In Fig. 7 the classical phase space of the n@pfor K
=2.21 with the stability islands of accelerator modes is
shown.

There are two periodic orbits of period two: one formed
by the pair of fixed point$s, =0.7656 and the other by the
pair (0, £2.3719. The points of each periodic orbits are
symmetric respect tp=0. They are surrounded by stability
islands inside which the dynamics of the system is regular;
each island is delimited by KAM curves, which cannot be
crossed. During the evolution, ensembles of points initially
located inside the islands centered(ia, =0.7656 do not
mix with those located inside the islands centered(On
+2.3719.

The invariance of the system under space reflection and
time inversion can be seen clearly from the structure of the
phase space.

The quantum version of the system is a variant of the
kicked rotator modeJ26], described by the Floquet operator

0 = RRKR= e—i(r/4)(ﬁ+ﬁ)2e—ik c051‘}e—i(7/4)(ﬁ+,8)2

9

(the kicked rotator corresponds to quasimomenjgim0).
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FIG. 9. (Color online (a)—(c) The Husimi distribution of three
eigenfunctions of the Floquet operat@t) A section of the Fourier
spectrum of(p(t)).

FIG. 8. (Color online Husimi distribution of the state vector at
times (a) t=800r, (b) t=900r, (c) t=28400r. (d) Tunneling oscil-
lations of(p(t)). Time is measured in number of periods.

For values ofr=47M/N (with M, NeN) the kicked the momentum distributions at different times are shown for

rotator undergoes a quantum resonai®#@, where the spec- M=1, N=128, andk=4.42/r (7~0.098 andk=45.022).
trum acquires a band structure, yielding ballistic transporfor the chosen value of, the stable periodic orbits of the

(see alsd28]). classical map(8) correspond to orbitg7, =15.6 and (O,
Having seth =1, the parameters andk are scaled by: +48.3 in the quantum phase space. The chosen initial state

with respect to the classical ones= 7, andk=k./#). IS a coherent state8) centered in {o=0,py=(2/7) X 0.766

Therefore the quantum parameteplays the role ofi; the ~ ~15.605). Periodic tunneling oscillations between the two

classical limit of the system is obtained by the limits-0, ~ symmetric islands centered ihp, take place.

k—o andK= k7= const. The tunneling oscillations are not suppressed even for

For 8=0 or 8= 1/2 the system is invariant with respect to long times. The calculation dfp(t)) in Fig. 8d) is carried

parity P and time inversiori, as in the former case. There- 0N for 10 modulation periods.

fore the Floquet eigenstates belong to invariant subspaces Note that att=8400r~824.668, wher{p(t)) assumes a
with respect to the discrete symmetries; for example, theyhaximum value, the quantum state is mainly localized in thg
can be classified in two classes: odd or even with respect t§/and to the upper bound of the torus, centered approxi-
parity [29,30. In the following we fix the value oB=0 and ~ Mately atpy~ =+ 48.3098[see Fig. &)]. As already said, the
analyze first the kicked rotator for a resonant valuer ahd classical evolution of ensembles of points located in the is-
then for a generic value of, lands centered inpg~=*2.4(py~=48.3) is independent
from the evolution of points inside the islands centered in
po~*0.8(py~*15.6), in one of which the initial wave
packet is localized.

Under the resonance conditier=47M/N, the quantum The quantum evolution instead couples structures that are
system is periodic of perioN if M or N is even[31]. There- independent in the classical system. In fact some eigenfunc-
fore the quantum system can be reduced on a torus and it®ns of the Floquet operator, involved in the dynamics, have
Floquet operator becomes a unitary finite matrix of dimen-high probability in both the pairs of islandisee Figs. @a)—
sion N X N. Exact eigenfunctions can be calculated. 9(0)].

The discrete momentum eigenvalues apé=n=m In Fig. 10@@) a portion of the spectrum of the Floquet
—N/2, with minteger, varying in the interval$m=<N. To  eigenphases versiksis shown. An avoided crossing can be
make a comparison between the quantum system and tlemen, close to the value &fused in the calculations of this
classical one on the torus, the classical varigbleas to be section, i.e.k=2K/7~45.022. The corresponding eigen-
rescaled by the factor 2/i.e., p’ =(2/7)p. Note that in the functions were selected by having a support in the region
following figures the apex of the quantum varialpé is  |n|<25 greater than 0.4. The regidn| <25 corresponds to
omitted. the classical portion of the phase spabg=|(7/2)n|

In Fig. 8 the first moment o and the Husimi function of =<1.227, in which the stability islands centered py

A. Resonant case
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FIG. 10. (a) A section of the eigenphases spectrumkwsf the _1ok ]
Floquet operator. Three eigenvalues for each valuk arfe repre- ]
sented(b)—(d) The momentum distribution of the three correspon- 0 200 400 600 800 1000

dent eigenfunctions fok=45.02.(e)—(g) The three correspondent t

eigenfunctions fok=45.05.(h)—(l) The three correspondent eigen-  FIG. 11. (Color onling Suppression of periodical oscillations of
functions fork=45.08. the first momen{p(t)) in the presence of nonlinear perturbation for

. . . . . three different values of the nonlinear parametay:u=5, (b) u
~+
+0.7656 lie. Owing to the invariance properties of the:lo, (0) u=20. The difference\(p(t)) is plotted, with the same

system, the eigenfunctions localized in regular regions of the \ )
lassical ph in doubl f ith Scale on the vertical axis. The values of the other parameters are
classical phase space occur in doublets of states With 0pPQ- 4 7178 k—4 424, N=128, L=2000. Time is measured in

site symmetries and nearly degenerate eigenvalues; wavyg . .. periods

packets localized in the symmetric islands of stability are

formed by symmetric or antisymmetric combinations of such

doublets. In Figs. 1@) and 1Qd) an example of a quaside-
generate doublet fdt=45.02 is shown; the Husimi function  _ 5 591 040-0.000 012:w;, @,, andws correspond to the

of one state of this doublet is plotted in Fiq_b9 difference between eigenphases of three doublets of quaside-
The dynamical tunneling can be explained by a three

states modef30]. In Figs. 1@b)—10() the three eigenfunc- g_e5n Zz)azteSOB elgjr:;un_ct(fniz ﬁb_oﬁgr 2¢2"1g$'55301 8;%
tions involved in the tunneling process for three different =.¢ ,_¢’,:‘21 73:2’8792’1 732833 whe.reqs ¢>' é
values ofk are shown. Fixing a value &, the three states r3e thé phacses 'Of the eigénfunctiohs plottea,in ?:,iq.s)c 9
that take part in the dynamical tunneling are a doublet o (b), 9(c), respectively. These eigenfunctions have a su’pport
qguasidegenerate states with opposite symmetry, localized i in’ the’re ion|n|<25 reater than 0.45 and an overla
regular islands, and a third state localized in the chaotic rep € regi =<2 g : P
gion outside the stability islandg0(b) for k=45.02 10e) probability with the initial stateP; greater than 0.01R;P;

for k=45.05, 1Ql) for k=45.08]. It is the chaotic state that >0'000.1)' : : .
. . S Also in this case we may consider the effect of a nonlinear
enhances dynamic tunneling between stability islands.

By varying k, the chaotic eigenstatiFig. 10b) for k perturbationu| |2 in the Hamiltonian operator. The effect of

. i . . this nonlinear perturbation on the quantum dynamics of the
=45.02] mixes itself with the state of the doublet sharing the, . S
same symmetryFig. 10d) for k=45.02] until a complete Ckicked rotator has already been studied in REI$,16 but

. only in nonresonant cases.
exchange between the two states happéfig. 10h) and : : . .
Fig. 1) for k=45.08] [5,30. Since the perturbation depends continuously on time

Beside the triplet of states shown in Fig. 10, there arethrough the wave functiog of the system, the time evolu-

other Floguet eigenstates that contribute to the behavior dfon OPeratoR between the kicks is approximated as a prod-
the first moment4) at fixedk; the separations between their uct of evolution operators on small intervals of timf& (L is
eigenvalues correspond to the frequencies found by the &€ number of small steps
composition of(p(t)) in Fourier components. L i

The frequencies mostly contributing to the motion are re- R= H exp( —i lnz)exp{ —i= Z|¢,n|z)' (10)
vealed by peaks of the power spectrum (@ft)), repre- i=1 4L 2L
sented in Fig. @) for the parametek~45.022. The spec-
trum has been calculated with a resolutionfoh =2 7/2'8 The effect of a nonlinear perturbation is to break the sym-

~0.000024. The three frequencies marked by arrows are
®1=0.0000570.000 012, w,=0.0003210.000012, w,
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FIG. 12. (Color onling Second moment vs time, measured in : (d)_
numbers of periods, for different values of the nonlinearity. Starting =% ., w¢ M/
from above:u=0, dash-dotted lineu=5, dotted line;u=10, 0 200 400 600 800 1000
dashed lineu=20, full line. The values of the parameters are
=41, k=2.5,N=16384,L=2000. FIG. 14. (Color onling (a) Tunneling oscillations in the non-

metries of the system thus destroying tunneling. In Fig. 1
the difference between the first moment of the unperturbe@
system (=0) and that of the perturbed ona(p(t))

=(p(t)),—(p(t))o is plotted for three different values of the
nonlinear parameteu=>5,10,20. It is seen that, for increas-

In(<P®>)

resonant kicked rotator modelb)—(d) suppression of dynamical
1tunneling of the first momengp(t)) in the presence of nonlinear
erturbation[(b) u=5, (c) u=10, (d) u=20]. The difference
(p(t)) is plotted. The parameters values are 1, k=4.42, N
=128,L=2000. Time is measured in number of periods.

ing values ofu, the amplitude of the oscillations &f(p(t))
grows and significant deviations of the first moment from
that of the unperturbed system start on smaller time intervals.
We have also analyzed the effect of the nonlinear pertur-
bation on the second moment. In analogy with what has been
found for the kicked harmonic oscillator under the resonance

'_ T T T T T T T T T
10 Faeese 4

FIG. 13. (Color onling Suppression of dynamical localization ° ’ ’ ' ’ ’ ' ' u

of the time averaged second mome?ﬁn(t) in the presence of

nonlinear perturbatioristarting from belowu=0, full line; u=5, FIG. 15. (Color online Time T at which |A(p(t))| becomes
dashed lineu= 10, dotted lineju= 20, dash-dotted line The pa-  greater tham\ versus the nonlinear parameterEach curve corre-
rameter values are=1, k=2.5, N=128,L=2000. Time is mea- sponds to different values &f: A=0.4,0.2,0.1,0.05 starting from
sured in number of periods. above.
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condition[14], in the presence of the nonlinear perturbationpression of tunneling oscillations of the first moment for dif-
the growth of the second moment is slower than in theferent values of the nonlinear paramet® u=5, (c) u
kicked rotator, even if it remains ballistic (§2(t)) =10, (d) u=20. The differences A{p(t))=(p(t))y
=c(B)t?). In Fig. 12 the second moment vs time is shown: —(p(t)), are plotted.

the four curves correspond t©=0,5,10,20 starting from In Fig. 15 the timeT at which|A(p(t))| becomes greater
above. This persistence of resonant behavior once the nofat A versusu is plotted. Each curve corresponds to differ-
linear term is switched ofat least on our observation time ent values ofA. Note that the evolution ofp(t)) in the
scalg is somehow surprising, and we hope further theoreticakicked rotator model is calculated at time intervals equal to
analysis will reveal its significancéi.e., if it is not sup- 7. therefore, the estimate of tinieis less precise than that
pressed on longer time scales calculated for the driven pendulum.

B. Generic case IV. CONCLUSIONS

We consider the kicked rotator far=1 and analyze the
effect of the nonlinear perturbation on the first and seconqjy
moment. For this value of the system is far from the clas-
sical limit and displays quantum localization, even if, as re-
marked in[32], quantum tunneling from the accelerator
mode islands to the chaotic regions provides an increase
the localization length of the system.

In accordance with16], the nonlinear perturbation sup-
presses localization and gives rise to an anomalous diffusio
with an exponent approximately equal to 2/5. In Fig. 13 a
bilogarithmic plot of the time-integrated second moment
Pizm(t)=1/t2:,_:10<p2(t’)> for k=2.5 and for different val-
ues ofu is shown; the straight line in the figure has a slope of This work was partially supported by EU contract
2/5. QTRANS network(Quantum Transport on an Atomic Scale

Tunneling oscillations ofp(t)) for the kicked rotator are and INFM PA project(Weak Chaos: theory and applica-
plotted in Fig. 14a). In Figs. 14b)—14(d) we show the sup- tions).

We have analyzed different physical systems for which
namical tunneling occurs: in particular the driven pendu-
lum and the kicked rotator. These systems are relevant for
experimental settings recently realized with cold atoms. We
ve stressed several new features: from the role of how
itially quasimomentum states are assembled to the effect of
Gross-Pitaevskii nonlinearities, revealing, in particular,
%ubtle features happening in the resonant kicked rotator case.

ACKNOWLEDGMENTS

[1] R. Balian and C. Bloch, Ann. Phy§N.Y.) 84, 559 (1974). [13] S. A. Gardiner, D. Jaksch, R. Dum, J. I. Cirac, and P. Zoller,
[2] M. Wilkinson, Physica D21, 341(1986; M. Wilkinson and J. Phys. Rev. A62, 023612(2000.
H. Hannay,ibid. 27, 201 (1987. [14] R. Artuso and L. Rebuzzini, Phys. Rev.66, 017203(2002.
[3] M. J. Davis and E. J. Heller, J. Chem. Phy§, 3916(1981). [15] F. Benvenuto, G. Casati, A. S. Pikovsky, and D. L. Shepelyan-
[4] S. Tomsovic and D. Ullmo, Phys. Rev. 3, 145 (1994). sky, Phys. Rev. Al4, R3423(1991).
[5] A. Mouchet, C. Miniatura, R. Kaiser, B. Greaud, and D. [16] D. L. Shepelyansky, Phys. Rev. Lef0, 1787(1993.
Delande, Phys. Rev. B4, 016221(2002). [17] D. A. Steck, V. Milner, W. H. Oskay, and M. G. Raizen, Phys.
[6] A. Mouchet and D. Delande, Phys. Rev6E, 046216(2003. Rev. E62, 3461(2000.
[7] C. Dembowski, H. D. Gia A. Heine, R. Hofferbert, H. Reh- [18] G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailestochas-
feld, and A. Richter, Phys. Rev. Le®4, 867 (2000. tic Behavior in Classical and Quantum Hamiltonian Systems
[8] D. A. Steck, W. H. Oskay, and M. G. Raizen, Scie2€8 274 (Springer-Verlag, Berlin, 1979 Vol. 93.
(2001). [19] N. W. Ashcroft and N. D. MerminSolid State PhysicéSaun-
[9] W. K. Hensinger, H. Hfiuer, A. Browaeys, N. R. Heckenberg, ders College, Philadelphia, 1976

K. Helmerson, C. McKenzie, G. J. Milburn, W. D. Phillips, S. [20] See, for instance, A. D. Bandrauk and H. Shen, J. Chem. Phys.
L. Rolston, H. Rubinzlein-Dunlop, and B. Upcroft, Nature 99, 1185(1993.

(London 412 52 (2002. [21] R. Luter and L. E. Reichl, Phys. Rev. @6, 053615(2002.
[10] See, for instance, the review by W. Kettegeal, in Bose- [22] S. Fishman, I. Guarneri, and L. Rebuzzini, J. Stat. P&¢s,
Einstein Condensation in Atomic Gaseslited by M. Ingus- 911 (2003.
cio, S. Stringari, and C. WiemafiOS Press, Amsterdam, [23] B. V. Chirikov, Phys. Rep52, 263(1979.
1999; E. Cornellet al, ibid. [24] A. J. Lichtemberg and M. A. LiebermaRegular and Chaotic
[11] See F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Dynamics(Springer-Verlag, New York, 1992
Rev. Mod. Phys71, 463(1999, and references therein. [25] S. Benkadda, S. Kassibrakis, R. B. White, and G. M.

[12] G. P. Berman, V. Yu. Rubaev, and G. M. Zaslavsky, Nonlinear- Zaslavsky, Phys. Rev. B5, 4909(1997).
ity 4, 543(1992); F. Borgonovi and L. Rebuzzini, Phys. Rev. E [26] G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, 8to-
52, 2302(1995; D. Shepelyansky and C. Sire, Europhys. Lett. chastic Behaviour in Classical and Quantum Hamiltonian Sys-
20, 95(1992. tems edited by G. Casati and J. Ford, Lecture Notes in Physics

036221-9



R. ARTUSO AND L. REBUZZINI PHYSICAL REVIEW E68, 036221 (2003

Vol. 93 (Springer-Verlag, Berlin, 1979 [30] M. Latka, P. Grigolini, and B. J. West, Phys. Rev58, 1071
[27] F. M. Izrailev and D. L. Shepelyansky, Teor. Mat. F8, 417 (1994).

(1980. [31] S. J. Chang and K. J. Shi, Phys. Rev34 7 (1986.
[28] F. M. Izrailev, Phys. Repl96, 299 (1990. [32] A. lomin, S. Fishman, and G. M. Zaslavsky, Phys. Re%3:

[29] G. Casati, R. Graham, I. Guarneri, and F. M. Izrailev, Phys. 036215(2002.
Lett. A 190, 159 (1994.

036221-10



